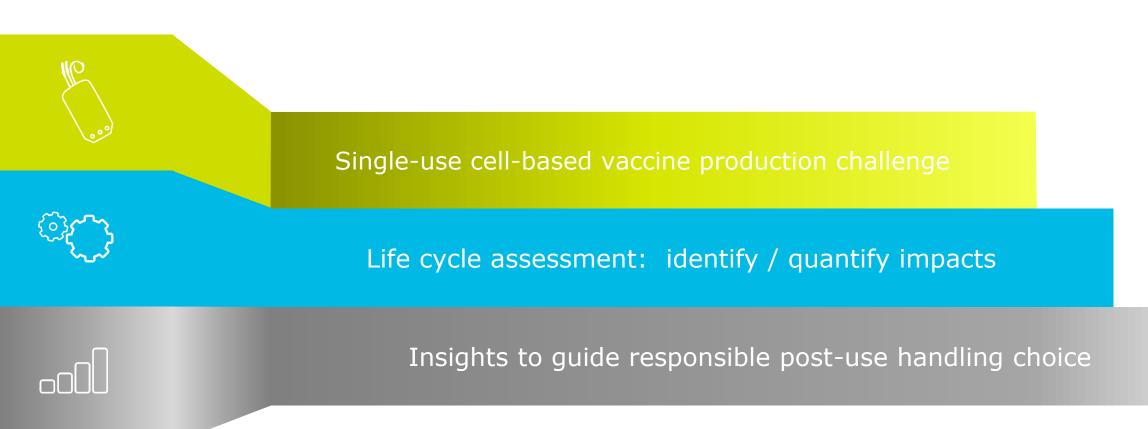


Improving the Sustainability of Cell-based Vaccine Production

ISPE Ireland Student Chapter, Webinar, 14th April 2021

Bill Whitford

DPS Group - Life Science Strategic Solutions Leader



DPS Group

- A leading global Architectural, Engineering and Consulting Company
- Advanced therapeutics focus
- 2000 People in 16 offices worldwide

Single-use vaccine production challenge

J&J's vaccine

- PER.C6 cell line technology
- Janssen's AdVac viral vector technology A high yielding vaccine mfg. platform
- "Scalable and fully industrialized"

Janssen COVID-19 Vaccine

(Ad26.COV2.S)

AdVac[®] and PER.C6[®] Technology of the Janssen COVID-19 Vaccine

https://www.janssenmd.com/printpdf/janssen-covid19-vaccine/pharmacology/mechanism-of-action/advac-and-perc6-technology-of-the-janssen-covid19-vaccine?pdf-version=

BioProcess International

UPSTREAM DOWN PROCESSING PROC

DOWNSTREAM MANUFACTURING PROCESSING

COVID vaccines: Why J&J could have market advantage over others

by <u>Dan Stanton</u> Thursday, January 28, 2021 8:03 am

Tried and tested technologies, a single-dose regimen, and a simple cold-chain infrastructure place Johnson & Johnson's potential COVID-19 vaccine at an advantage over the current approved offerings.

Johnson & Johnson (J&J) has said it plans to present results of its COVID-19 candidate JNJ-78436735, also known as Ad26.COV2-S, recombinant, in the next few days.

"Being in the final stages of a robust 45,000-person study, analytics will be completed, and we plan to report out the results by early next week," CFO Joe Walk said on an investor call Tuesday.

https://bioprocessintl.com/bioprocess-insider/global-markets/covid-vaccines-why-jj-could-have-market-advantage-over-others/

Vaccine Type	Description		
Attenuated whole cell	Genetically weakened pathogenic bacteria		
Recombinant bacterial vectored	Attenuated or inactivated bacteria present heterologous antigens		
Live attenuated virus	Genetically weakened pathogenic virus		
Recombinant viral vectored	Attenuated or inactivated virus present heterologous antigens		
Killed (inactivated) cells or virus	Pathogenic bacteria or virus physically or chemically disabled		
Subunit	Containing free (or vectored) pathogen antigens (e.g. capsid protein, polysaccharides, or toxins)		
Recombinant subunit	Heterologous antigens expressed in prokaryotic (e.g., E. coli) or eukaryotic (e.g., animal) cells		
Polyvalent	Immunizing against more than one serotype-specific epitopes		
Polysaccharide	Free polysaccharides that elicit B-cell immune responses		
Conjugate	Weak antigen (e.g., polysaccharide) covalently attached to a stronger antigen (e.g. a protein)		
Heterotypic (Heterologous)	One pathogen is introduced in order to provide protection against a different one		
Synthetic	Chemically synthesized Protein / glucan / nucleic acid antigens and cell-based vectoring		
Hapten Conjugate	Small molecules that elicit a specific immune response when attached to large carrier molecules		
Dendritic cell	In vivo or in vitro stimulated DCs or precursors induce antigen specific T cell response		
DNA	DNA coding for an antigen's gene from a pathogen inserted into the vaccine recipient's cells		
RNA	mRNA coding for an antigen's gene from a pathogen inserted into the vaccine recipient's cells		
Viral vectored	Live viruses carry nucleic acid coding for antigens that are expressed in the recipient's cells		
Chimeric	Typically, substituting pathogenic genes from the target pathogen to a related, but safe organism		

Vaccine Type	Description		
Non-env. virus-like particle	Antigenic proteins that self-assemble into empty virus capsids		
Enveloped virus-like particle	Self-assembling antigenic proteins establishing an envelope by budding from an animal cell		
Subviral particles	A subunit vaccine as a VLP, but with truncated capsid proteins		
Combination VLP	Subunit VLP presenting multiple recombinant or covalently coupled antigens or epitopes		
Exosome/EV based delivery	Exosomes/EVs harboring antigenic protein, glycans or a nucleic acid from pathogen		
Exosome/EV display	Targeting antigens to surface of extracellular vesicles or exosomes		
Synthetic nanoparticle	Antigen functionalized 1-200 nM lipid, protein, carbon, mineral, metal or nanopolymersomes		
Synthetic microparticle	Antigen functionalized 1-1000 μ m lipid, protein, carbon, mineral, metal or polymer particles		
Liposome	Spherical phospholipid bilayers enclosing an aqueous core and presenting or harboring antigen		
Emulsion	Stable dispersions of hydrophobic fluids including antigens in buffer		
Toxoid vaccines	Vaccine against inactivated (detoxified) toxic compounds rather than the pathogen itself		
Protein complexed	Conjugate vaccines using stimulatory protein complexes (as from microbes) as a carrier		
Dendritic cell	Stimulating DCs in vivo or ex vivo against the target and then infusing them into the recipient		
T-cell receptor (TCR) peptide	Peptides derived from amino acids of TCRs that down-regulate expression of those TCRs		
Prime-boost	Inoculating w/ one type of vaccine, then strengthening response with another type		
Dermal	Mechanically induced migration of vaccine through the skin		
Transcutaneous	Topical application of vaccine to intact skin that chemically migrates internally		
Non-env. virus-like particle	Antigenic proteins that self-assemble into empty virus capsids		

Image courtesy of Sartorius

Image courtesy of Sartorius

- Continued shift to SU in cell-based vaccine production
- How does SU technology support sustainability expectations?
- What are all the environmental trade-offs associated with the shift?

Needs

Pharma

Medical

Shortages of filters / bags Change control process SUS shipping / storage Operational geography War powers act

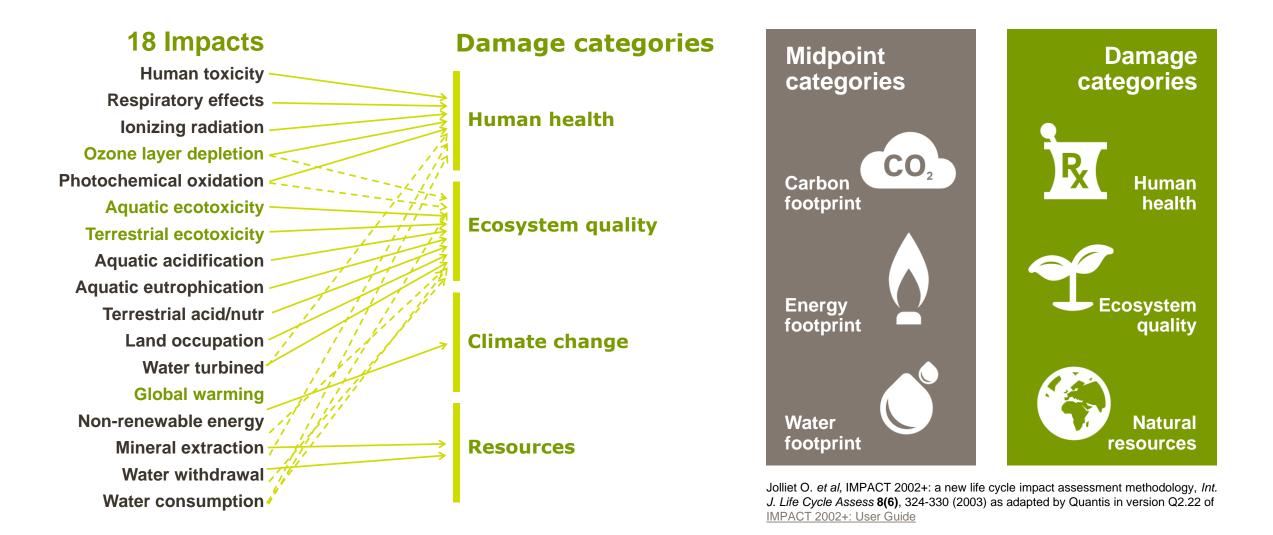
Regulatory

Business

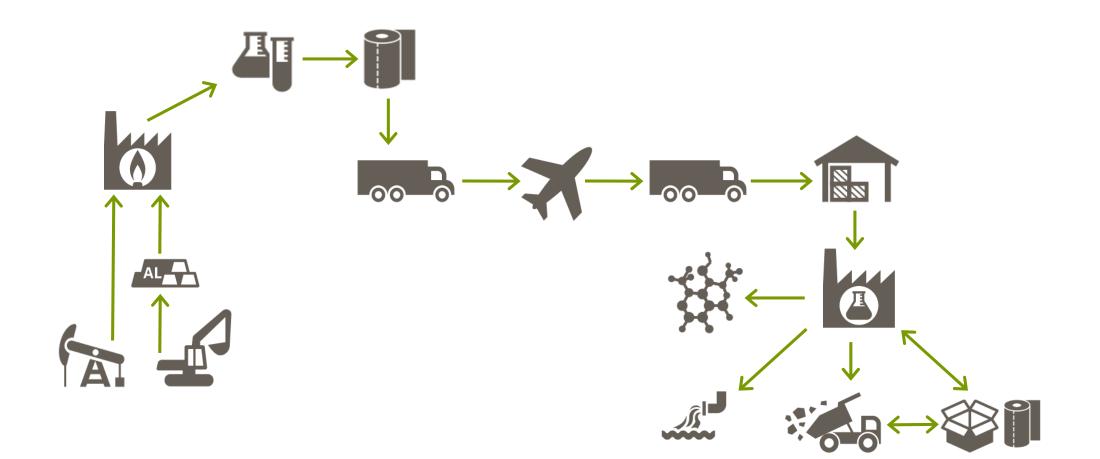
Burden trade-offs between distinct concerns

E.g., which is most significant?

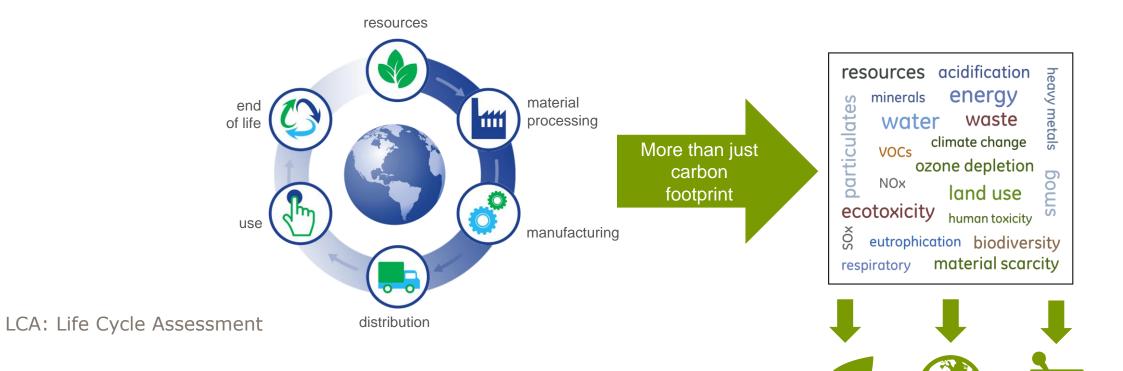
- Landfill operation
- Atmospheric carbon


E.g., best option for complex / tainted plastics

- Re-use in national repurposing center?
 - High process / transport carbon burden
 - Only delays carbon release
- Use for local power generation?
 - Low process / transport carbon burden
 - Releases all carbon now


LCA

A detailed, rigorous approach to environment sustainability



Ecosystem

quality

Natural

resources

Areas of protection (damage categories)

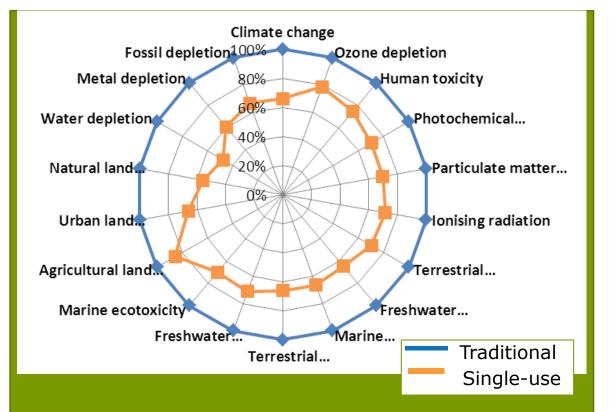
Human

health

Understanding impact of products / services across value chain

- Support decisions
- Evaluate alternatives
- Prioritize opportunities
- Mitigate environmental issues

LCA study results

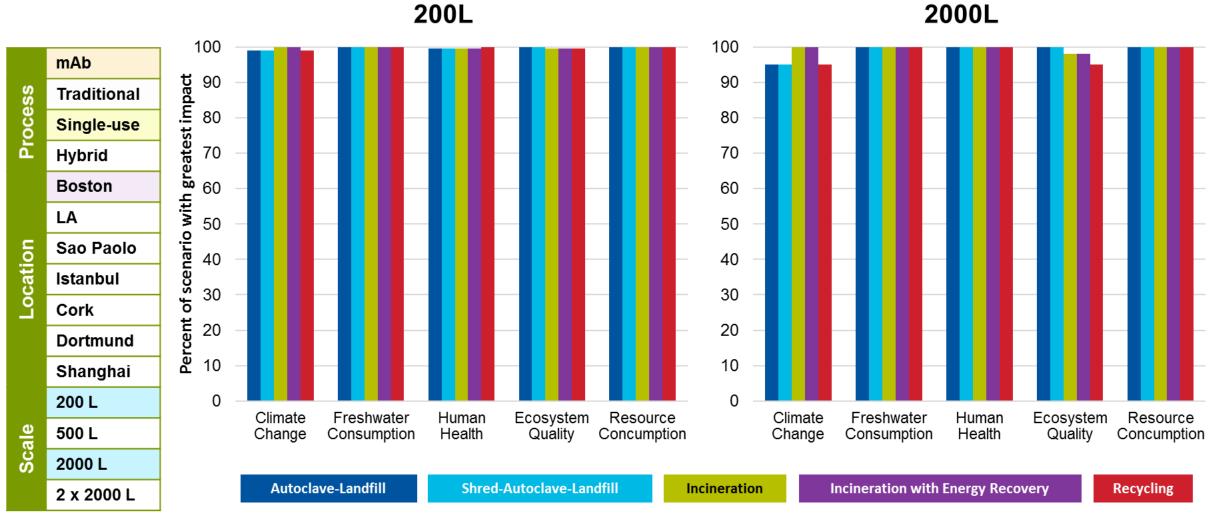

DDPS

Purpose / driver of life cycle assessment (LCA)

• Compare multi-use vs. single-use impacts

Results / lessons learned

- SU exhibits lower impact across full life cycle
 - Reduction of WFI, process water, steam
 - Less energy consumption, water fouling, CIP / SIP
- Various SU post-use impacts negligible compared to use-phase and supply chain activities
- Study was subjected to a third-party critical panel review per ISO 14040-44



Result was unexpected, counterintuitive and only accessible through detailed LCA

Pietrzykowksi M. *et al*, An Environmental Life Cycle Assessment Comparison of Single-Use and Convention Process Technology for the Production of Monoclonal Antibodies, *J. Clean. Prod.* 41, 150-162 (2013).

Comparative impact: alternative disposals

An Environmental Life Cycle Assessment Comparison of Single-Use and Conventional Bioprocessing Technology. GE Healthcare Life Sciences: Uppsala, Sweden, 2013; http://bioprocess.gelifesciences.com/~/media/bioprocess/documents/

Generalizations: comparing classical to SU

- SU has lower environmental impact over comprehensive life cycle
- Greatest impact observed during the use-stage for both technologies
- Water usage (and consequences) was lower for SU in all life-cycle stages
- End-of-life disposal environmental impacts were higher in the SU systems
- Post-use impacts were negligible, in an overall context of the entire life cycle
- CIP / SIP and WFI energy demands are greatest burdens in classical systems
- Distance / mode of transport from manufacturer drives greatest burden from SU
- Supply-stage carbon/energy impact higher for SU, due to manufacture/transport
- No significant differences were observed between entity types, production scale or mixed modes
- Facility geographic location is largest environmental impact factor due to transport and power grids

SU materials post-use considerations

ODPS Better Engineered Solutions

SUSTAINABILITY

Sustainability is key to our design philosophy.

We aim to protect and replace natural resources whenever possible and to minimize the use of non-renewable resources.

Parameters considered

- Type of plastics employed
- Used materials at location
- Environment burden type
- Cost of standard disposal
- Best choice available now
- Cost of green alternatives
- GMOs DNA contamination
- Traces of active ingredient
- Distance to recycling plant
- National and regional laws
- Corporate goals/obligation
- Customer/societal demand

Improving the SU vaccine mfg. footprint

DDPS

Efficient application

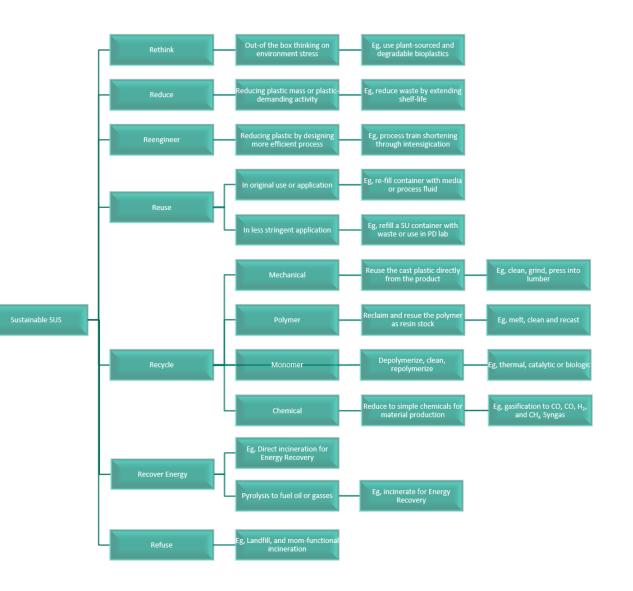
- Reduce SU pieces
- Employ smart packaging
- Reduce secondary packaging
- Re-engineer process using less
- Longer shelf life of consumables
- Re-engineer materials reducing mass
- Environmental footprint-based design
- Exploit process intensification serendipity
- Employ worst plastics only where needed
- Bag manufacture close to pharma production
- Recyclable plastics availability: by demand or law
- Examine the many EOL potentials for local geography
- Biodegradable, bio-sourced, bio-based, or bio-plastics

Post-use handling

- Second-use
- Polymer recycling
- Land fill (untreated)
- Grind, sterilize & landfill
- Proximity of post-use plant
- Pyrolytic liquid fuel generation
- Cold pyrolysis increasing utility
- Transesterification to monomers
- Enzymatic-based depolymerization
- Incinerate with on-site power generation
- De-polymerize to re-usable plastic monomer
- Convert to re-purposed plastic boards/pallets`
- Reduce to C, H and O: re-synthesize monomer

- Structure, polymer, monomer, chemical, energy
- Mechanical, carbon and monomer
- Upcycling, recycling, downcycling
- Physical, chemical and elemental
- Primary, secondary and tertiary
- Reuse, repurpose and recycle
- Structure, material and energy

Rethink Reduce Re-engineer Sustainable SUS Reuse Recycle Recover Energy Rubbish


Rethink, reduce, re-engineer, reuse, recycle, recover energy, rubbish

From new materials, to engineering and design, to post-use handling ("recycling" or "end-of-life")

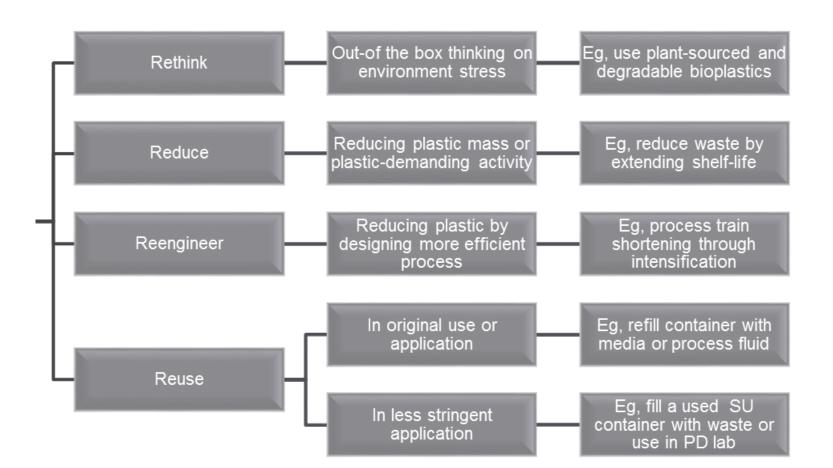
Each approach is currently studied

Some now commercially provided

Rethink

E.g., use bioplastics for resin

Reduce


E.g., use less plastic mass or plastic-dependent activity

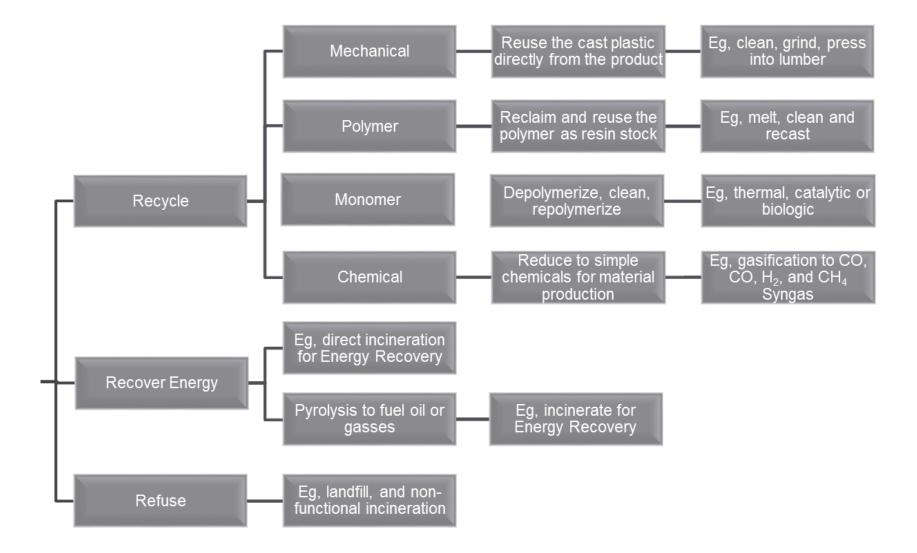
Reengineer

E.g., process intensification to increase plastic efficiency

Reuse

E.g., use again in same, or in a less stringent, application

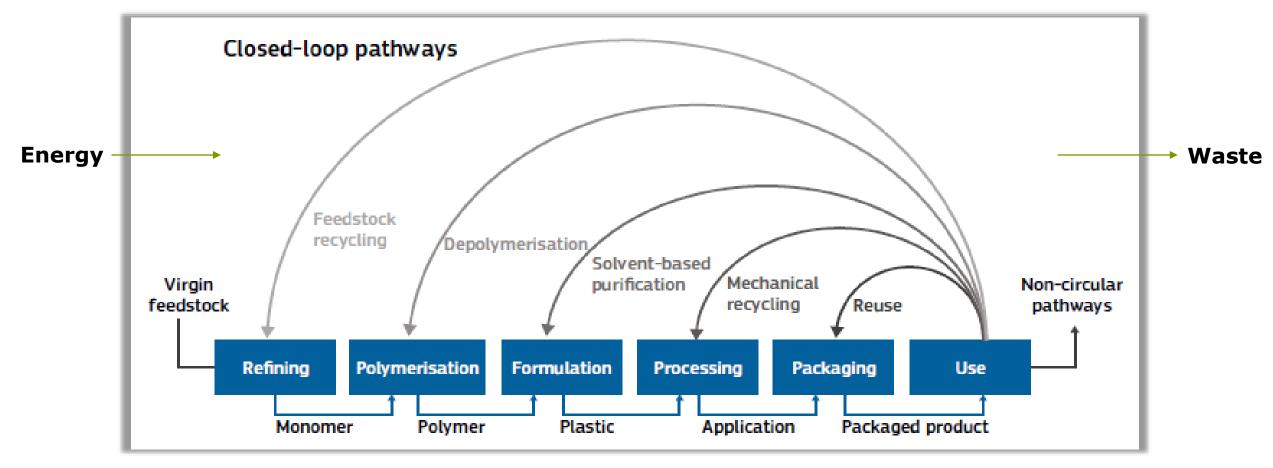
Recycle

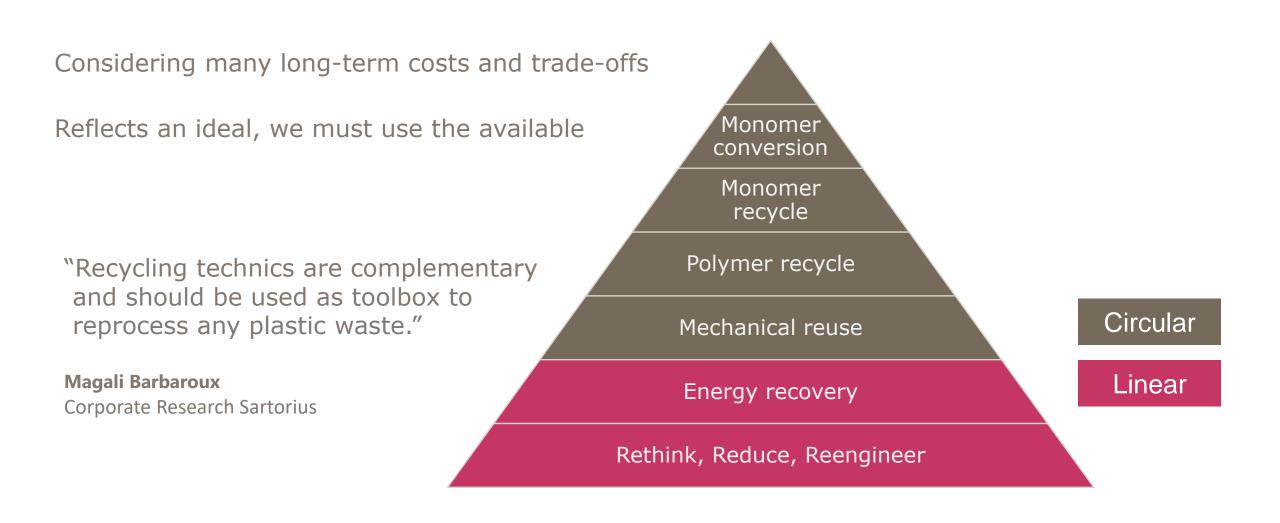

• Mechanical, polymer, monomer, chemical

Recover energy

• Incineration, pyrolysis

Refuse


• Landfill or nonfunctional incineration


Economy	Approach	Post-use Technology	Example or Definition		
Circular	Plastic Renewal	Petrochemical reuse	Gasification to syngas and used as feedstock for monomer production		
		Monomer reuse	Catalyzed glycolysis of PET to BHET for re-polymerization to PET resin		
	Carbon Renewal	Polymer reuse	Cleaned, liquified and filtered polymer condensed to plastic resin stock		
		Mechanical reuse	Processed, ground plastic casting formed into shipping pallets or lumber		
Linear	Disposal	Landfill	Transport of raw or processed waste to either local or centralized landfill		
	Re-, Up-, or Down-cycle. Repurpose	Product reuse	Post-use application of product in the very same functions or activities		
		Product new use	Post-use application of product in new, higher or less stringent function		
		Decomposition to mixed petrochemicals	Pyrolysis to porous (activated) carbon and terminal consumption in use		
	Energy Recycle	Grind and incinerate	Catalyzed incineration to produce steam for use in electricity generation		
		Decomposition to mixed oligomers	Catalyzed pyrolysis to hydrocarbon oil and terminally consumed as fuel		

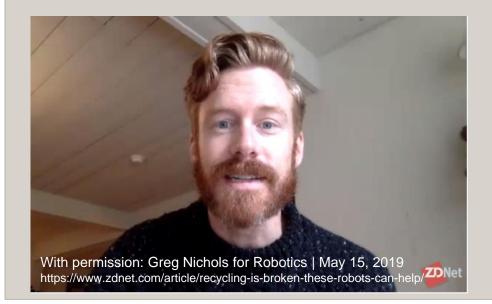
Adapted from BPSA, Engineering for Sustainability in Single-Use Technologies, BPI, In Press 2020

Automation provides rapid sorting

- Multiple sensor types provide rich data
- Artificial Intelligence provides computer vision
- Autonomous robots distribute and organize waste

Courtesy AMP Robotics WWW . https://www.amprobotics.com/

ZDNet


IDEOS WINDOWS 10 ENTERPRISE SOFTWARE

Recycling is broken. Can these robots help?

We're in the middle of a full-fledged international recycling crisis.

f in V A By Greg Nichols for Robotics | May 15. 2019 -- 11.00 GMT

<u>AMP Robotics</u> is another example of a company combining robotics, machine vision, and AI to make recycling faster and cheaper, raising the possibility that we can onshore our waste disposal.

Conclusion

1	2	3	4	5
Science-based	Chemistries	There is much	Many circular	Few options
and life-cycle	and options	progress in	chemistry	are available
approaches	are not	the field	options	now,
provide	generally	currently	theoretically	but are in
accuracy	understood	occurring	available	development

Thank you

Bill Whitford Strategic Solutions Leader DPS Group www.@dpsgroupglobal.com